How to use Tethr to improve your Customer Effort Score

Dean Cruse

February 27, 2019

Download The End of Empathy Ebook

So you're ready to improve your Customer Effort Scores... But without knowing where or why effort is occurring in customer interactions, where do you start? How do you know what to change to produce a better outcome?At Tethr, we help customers address this problem every day, so we wanted to outline the common steps customers take when using Tethr to improve Customer Effort Scores.

Step #1 - Use the Tethr Effort Library to identify instances of effort in customer interactions

The Tethr Effort Library was built based on the research from The Effortless Experience (authored by Tethr’s Chief Product and Research Officer Matt Dixon) to automatically identify where effort occurs in customer phone calls and chats. With the Effort Library, the Tethr platform is able to look at thousands of different ways customers can express various high-effort experiences like frustration, recontact or channel switching, and categorize those occurrences into structured data points. The Effort Library also enables the Tethr platform to identify agent behaviors that are known to either contribute to or mitigate customer effort.

After the Effort Library has been applied...

Once the Effort Library has been applied to a significant set of your recorded customer interactions, you will have a good sense of where effort is occurring today and will be able to get started on making improvements. For instance, you may find that there’s a significant number of calls where customers express that they had to contact customer support after trying (and failing) to solve a problem on their own on your company’s website. To address this, you may decide to partner with the team that manages your online knowledge base and see what improvements could be made to your online self-service experience.This allows you to establish a foundation in which you can run more sophisticated diagnostics to discover why customer effort is occurring.

Step #2 - Train Tethr to find and categorize other relevant customer interaction data points

Categorizing instances of customer effort is a great start. But to really have the context you need to address your customer effort score, you need to build a broader foundation of categories that represent details about interactions specific to your business. Tethr has pre-built libraries for certain types of businesses that you can apply to automatically categorize common interaction events. These can include a customer asking to check their policy when contacting an insurance company, requesting to transfer funds when contacting a financial company, or requesting to cancel a service.Once you’ve utilized all of Tethr’s pre-built libraries that are relevant to your business, you’ll want to use Tethr’s AI-enabled category creation capability to create custom categories. These might include specific marketing offers or campaigns, competitor mentions and any specific agent behavior your organization coaches.

Download Member Experience Ebook

Step #3 - Build reports to understand the context surrounding instances of customer effort

With Tethr’s reporting interface, you can easily start building reports that incorporate multiple categories and other pieces of metadata. Do this to uncover key trends and relationships.Here are some examples of questions you may try to answer when building these reports:

“In calls with where a customer expresses frustration, what’s the most common reason for call?”“In calls where the agent expresses uncertainty, which product is mentioned most often?”“Are agents responding to high-effort customer statements with the effort-mitigating strategies we coach?”“Which agent behaviors are immediately followed by customer frustration?”“Which agents are expressing uncertainty most often?”

When you start analyzing Effort categories in relation to each other and other categories, you start to see very clear areas for improvement that you can act on immediately to impact your Customer Effort Score.

Step #4 - Relate interaction data to Customer Effort Score survey data

Finally, it’s time to tie in the actual Customer Effort Scores from the surveys customers complete after interacting with customer service agents. We integrate this data into the Tethr platform as a “post-call outcome”, and it becomes available to report on just like any other piece of metadata you may have used to build reports in step three. With this final piece of the puzzle, you can start to narrow down which part of an interaction leads to high or low survey responses.You might decide that measuring your Customer Effort Score by surveying customers isn’t the most effective way to track and address Effort in your broader customer experience strategy. For one thing, when you ask a customer to complete a survey, you’re asking them to exert more effort. You also end up with a fairly tiny percentage of customers that actually complete the survey, which leads to skewed data.

What does this mean for you?

Many companies we work with decide to use Tethr reports based on categories from the Effort Library to track quantifiable metrics around customer effort rather than use the traditional, survey-based Customer Effort Score going forward. Other companies decide to report on both survey results and interaction data to get a sense of perceived effort (what customers submit in surveys) vs. actual effort (what occurs in calls and chats).Ready to learn more about working with Tethr to improve your customer effort scores?

Download Agent Coaching Kit
Jump to:

Most popular articles